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Abstract
The residue number system, or RNS, is analyzed in detail and compared against a

conventional two's complement system for the problem of computing Discrete Fourier
Transforms (DFTs) via the Winograd Fourier Transform Algorithm (WFTA.) The
analysis shows that in a side-by-side comparison, the size and speed advantages of
RNS cannot compensate for the high overhead required for conversion and scaling.
The residue number system, or RNS, is a system of representing integers by their
remainders, or residues, after division by a predetermined set of relatively prime inte-
gers. Operations such as addition, subtraction, and multiplication can be performed
with modular arithmetic on these residues in independent channels, such that it is
a carry-free system. RNS can exploit efficient ROM layouts by building arithmetic
units out of ROMs. The main disadvantage of RNS is that scaling and conversion
back to RNS require a lengthy series of operations. The WFTA is found to be the
best algorithm for doing DFTs in RNS because it reduces the need for scaling by
nesting the necessary multiplications into one layer, such that there is only one layer
of coefficients that increase the range of the output data.

An area-time metric for a custom VLSI layout is used to compare RNS adders and
multipliers to conventional binary components. It is shown that in a strict side-by-
side comparison, with no rounding allowed, RNS can outperform two's complement
significantly. However, when RNS is compared aagainst a two's complement system
not constrained by the RNS requirement to avoid scaling, the two's complement can
use rounding arithmetic to beat RNS. Since the WFTA was found to be the most ideal
algorithm for doing DFTs in the RNS, it is concluded that RNS does not provide a real
advantage for doing DFTs. A new system is proposed, in which DFTs are performed
using distributed arithmetic with ROM lookup tables.

Thesis Supervisor: Professor Bruce R. Musicus

Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Computing the Discrete Fourier Transform (DFT) of a data sequence is a common

operation in digital signal processing. However, the time required to perform trans-

forms can be a significant bottleneck in applications where there is a large number

of data points, such as in image processing and radar signal processing. There exist

many algorithms for computing DFTs, the most common being the Cooley-Tukey

Fast Fourier Transform (FFT) algorithm. Since then, however, several other algo-

rithms have been developed to reduce the number of computations required, but

with a less regular structure than the FFT. The most prominent of these are the

Good-Winograd Fourier Transform Algorithm (GWFTA, also known as the Prime

Factor Algorithm) and the Winograd Fourier Transform Algorithm (WFTA), which

reduce the number of multiplies required in the transform [3].

There has likewise been a great deal of research done on specialized high-speed

architectures for performing these computations [18, 1, 20, 9, 2]. Specifically, there has

been some interest in doing these calculations in the residue number system (RNS),

in which integers are represented by their value modulo a predetermined set of small

integers [5, 6, 19]. This number system has been shown to have properties that result

in significant speed advantages in digital signal processing applications, where most

of the computations required are multiplications and additions.
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This thesis will analyze and compare RNS and two's complement systems in terms

of size and speed for a custom layout to determine if RNS is inherently better for solv-

ing the DFT problem. Previous work has emphasized the speed advantage of RNS

over conventional binary arithmetic, ignoring the increased speed possible in conven-

tional binary arithmetic through the use of pipelined or parallel VLSI components.

Therefore, an area-time product is a better metric for comparison and will be used in

this thesis. This chapter will introduce the residue number system, and explain why

it may be better for performing DFTs and what its disadvantages are. Chapter 2

explains in more detail the requirements for doing arithmetic in the RNS and the

parts of such a system. Chapter 3 discusses the choice of using an area-time product

to evaluate computational systems, and it compares two's complement components

to RNS components in order to determine the relative advantage of RNS at the ad-

dder and multiplier level. Chapter 4 explains the three most efficient algorithms for

computing DFTs and describes how the WFTA is the most ideal algorithm for RNS.

Chapter 5 uses the area-time metric to compare two's complement and RNS systems

designed for doing different size WFTAs. The conclusions, summed up in Chapter 6,

are that RNS does not provide a clear advantage, in terms of the area-time metric,

over two's complement for the DFT problem. Other approaches to the problem and

applications of the RNS are suggested for further research.

1.1 The RNS in Digital Signal Processing

The residue number system, or RNS, is an integer coding system which has been

shown to have potential speed advantages in systems designed for digital signal

processing. A residue system represents an integer by a number of remainders, or

residues, after division of the integer by a set of given integers. This is also called

modular arithmetic because the remainder is the representation of the integer in a

modulo n system, where n is the number by which the integer is divided. For exam-
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pie, 23 could be represented by 2, 3, and 2, which result after division by 3, 5, and

7, respectively. RNS arithmetic is not new; in fact, the previous example is taken

from Suan-ching, written by Sun Tzu in the third century [16]. His work describes

a method for converting the residues back to the integer. Today, this procedure is

appropriately termed the Chinese Remainder Theorem.

The potential advantage of RNS-based digital systems is that once integers are

represented by their remainders modulo a given set of integers, operations such as

addition, subtraction, and multiplication can be performed independently and in

parallel on the different remainders. This arithmetic is done modulo n, where n is

the integer upon which the corresponding residues are based. Since a large integer

can be represented by several smaller residues, and the arithmetic operations on these

residues can be performed independently and in parallel, the RNS has potential speed

advantages because the residue digits are smaller yet they require no carries between

them. The speed advantages are most promising in digital signal processing where

the RNS-compatible operations of addition, subtraction, and multiplication are most

common.

A residue number system is defined by a set of integers {m 1 , 2,.... mL} which

are pairwise relatively prime. (The greatest common factor of any two is 1.) Any

integer X in the range [0, M - 1], where M = MI .... mL, can be uniquely

represented by the set of residues {xj, x 2 ,.. ., XL1}, where

xi = X mod mi = IXI,,i = 1,...,L. (1.1)

Soderstrand et al. explain that for a signed number system, the legitimate range

[0, M - 11 is divided into positive and negative regions. For M odd, the permit-

ted range is [-(M - 1)/2,(M - 1)/2] with negative integers mapped to [(M +

1)/2, M - 1] of the legitimate range above. Likewise, for M even, the permitted

range is [-M/2, (M/2 - 1)] with negatives mapped to [M/2, M - 11 of the legitimate

range [121.

Arithmetic operations in RNS are very simple for addition, subtraction, and mul-
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tiplication. If X, Y, and Z are represented in the RNS by

X #

Y

Z

then the operation X * Y = Z maps to

(xi * y,) rod rn = zi=1, ... L,

where * represents addition, subtraction, or multiplication. General division is not

possible because the set of integers is not closed over division. Scaling a number in

the RNS will be discussed later. The residue digit results alone are not very useful

until they are converted back to an integer. There are two well known techniques

for converting the residue digits back to an integer. They both involve quite a few

operations and will also be discussed later.

Techniques for implementing RNS-based systems have been studied in great de-

tail [12]. There are generally three stages: converting data to its RNS equivalent.

performing the necessary computations to process the data, and converting the re-

sults back to radix-2 binary numbers. The first operation, converting to a residue

representation, is discussed by Jenkins in his description of an RNS digital filter. The

conversion is done most easily with a ROM lookup table for each modulus [7]. The

size of the table is within reason because the number of possible entries is limited to

the size of the modulus.

Many systems have been designed for implementing the two basic RNS opera-

tions of addition and multiplication. [12, Part III] One of the simplest ways of doing

addition is again to use a memory lookup table, where the address is formed by the

concatenation of the two residues. The memory will have 22" words with n bits per

word, where n is the number of bits in each residue. Soderstrand has explained how

the size of the memory can be reduced if the addition is done by first adding the

14



residue digits with a binary adder and then using a memory with an n + 1 bit address

to correct the result for the given modulus. Other systems eliminate the need for the

extra memory hardware by using normal binary adders and a correction factor to get

the RNS result [11]. This is done most easily if moduli are of the form 2", 2" + 1, and

2n - 1 because of their proximity to a power of 2.

Multiplication in RNS can be just as simple as addition. If lookup tables are

used for addition, they can also be used for multiplication, so that the necessary

hardware and speed will be the same as for addition. Soderstrand [13] and Jullien [81

present two other approaches, which decrease the size of the memory lookup tables

in exchange for some additions. A fourth way of doing multiplication is a more

conventional bitwise multiplication. The multiplicand is multiplied successively by

each bit of the multiplier and the result is doubled and added to the result from the

next least significant bit. This method requires modular adders and, therefore, is

more simple if the moduli are of the form 2", 2" + 1, and 2" - 1.

Two well-known methods exist for converting residues back to integers. Szabo

and Tanaka describe them in their comprehensive text on RNS [14]. The first is the

Chinese Remainder Theorem:

X = (hi mod M, where fhi = M/mi. (1.2)

Although this is the shorter of the two, it requires the use of a modulo-M adder,

where M is the dynamic range. The other method is to do a mixed-radix conversion

on the RNS digits. An integer is represented in the mixed-radix system by

L-I
X = aN fJ m, +... + a3 mIM 2 + a2mr + at, (1.3)

i= I

where the a,'s are called the mixed-radix coefficients. These coefficients can be found

through a sequence of L - 1 subtractions and L - 1 multiplications on the original

residues. The integer X is found by adding the terms in the above expression. Any

necessary division or scaling in the RNS can also be performed by converting to the

mixed-radix form since it is a weighted number representation.
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Scaling is a problem which must be dealt with in RNS systems because of the

potential problem of exceeding the dynamic range of a system. The problem is that in

RNS, the magnitude of an integer depends on all its residues together, so each residue

digit cannot be scaled independently. Scaling is different from general division because

it implies division by a given constant and rounding. Szabo and Tanaka describe the

procedure most commonly used, which is to scale by one of the moduli [14]. In

order to ensure that the rounded division will result in an integer, the remainder

for the modulus by which the integer is being scaled is subtracted from the RNS

representation. The RNS digits are then multiplied by the multiplicative inverse of the

scaling modulus and a base extension algorithm, similar to mixed-radix conversion, is

used to determine the new residue for the scaling modulus. This algorithm requires

significantly fewer computations if the moduli are of the popular 2', 2' + 1, and 2' - 1

form.

The speed advantages of RNS arithmetic extend from the fact that operations on

the residues can be carried out independently. Since the residue digits are limited by

the size of the moduli and there is no carry information sent from one residue digit

to another, residue systems should perform faster than conventional radix-2 systems

due to the reduction of carry propagations. The drawbacks are that

1. general division is not possible since division is not closed over the set of integers,

2. scaling, a more specific type of division, is very inefficient, and

3. some time must be invested in converting integers to and from the residue

system.

Hence, the speed advantage of RNS is most promising when the number of simple

arithmetic operations required by the application algorithm is large with respect to

any required scaling or conversion operations.
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1.2 Computing DFTs with RNS Arithmetic

Using RNS arithmetic to compute DFTs raises issues that are not so great a concern

with a radix-2 weighted number system. The greatest of these issues is the problem of

scaling, because RNS is a system for encoding integers. Any DFT algorithm requires

the multiplication of the input data by twiddle factors of the form e-j* n , whose

real and imaginary parts are a cosine and a sine. These values are always less than

1. so that encoding them in RNS requires scaling them up by the number of bits

of desired resolution. With the twiddle factors all represented by integers greater

than 1, the dynamic range grows with the transform size. A residue system would

therefore require a dynamic range larger than that of the original data to allow for

integer growth before scaling. This is not a problem in a radix-2 system because any

desired scaling and truncation can be done by shifting the decimal point and throwing

away the least significant digits to make room for the digits with a greater weight. As

explained in the previous section, however, scaling RNS values requires a significant

number of computations.

The size of this scaling problem depends on the actual DFT algorithm and moduli

set being used. Taylor has shown that the WFTA would be most suitable for RNS

because it reduces the number of multiplies to a minimum and, hence, reduces the

number of scaing operdtions [171. Whether or not the RNS can improve the sarea-

time product of DFT calculations is a question that will be addressed in this thesis.

There are two main problems with determining whether or not an RNS-based

design can outperform a similar system using conventional arithmetic. The first is

that there is no standard, optimal design for a system that computes DFTs. Most

of these specialized hardware designs are highly pipelinerl, but other than that, they

use many different architectures and algorithms depending on the application and the

desired performance. This leads to the second problem, in that there is no typical

application with a set of requirements that is representative of all systems requiring

the use of DFTs. DFTs vary in the size of the transform and in the desired accuracy
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and speed of the computation. Accordingly, a system can be designed to optimize

its performance for a given application, even though it may be quite inefficient for

another.

For these reasons, the first goal of this thesis is to show that the area-time metric

represents the most significant constraints on systems used to compute DFTs. These

constraints include speed, size (in terms of silicon area), and power as a function of

the transform length and the desired accuracy. The performance of the best algorithm

and hardware implementation in a standard technology base will be evaluated using

this metric to determine performance characteristics of specific DFTs implemented

with an RNS architecture.
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Chapter 2

Using the RNS in Digital Signal

Processing

This chapter will expand on the requirements for doing digital signal processing in

the residue number system. As explained in Chapter 1, there are three parts to an

RNS system:

1. conversion of data from two's complement or other binary format to RNS,

2. processing the data in the RNS, and

3. conversion of the data from RNS to original binary format.

These three parts of the problem will be addressed before examining how the RNS

compares to conventional two's complement arithmetic.

2.1 Conversion From Two's Complement to RNS

The first part of the processing in RNS is to calculate the residue representation of

each piece of data for the set of moduli being used. Since the ultimate goal of using

the RNS is to increase the speed of a system, this conversion must be done as quickly

19



as possible. Jenkins discusses a common and efficient solution, which is to use high-

speed ROMs to look up the residues for each modulus independently. For relatively

small moduli, each of these ROMs would be of a manageable size(7]. If we let b be

the number of bits in the original integer X, and we wish to determine xi = IXI,,,

where mi has bi bits, then the ROM must be of size 26 x b, bits. Although bi can

be kept relatively small (3-7 bits), the original dynamic range determined by b may

be large, requiring a very large ROM with many small words. An ideal solution to

this problem is to divide the problem into smaller pieces. The b-bit number may be

divided into several smaller numbers, such as the least significant and most significant

7 bits. These smaller numbers can be looked up in ROMs independently, weighted2

by proper powers of two. and then added together in a modulo m, adder. Techniques

for modular addition will be discussed in the next chapter.

2.2 RNS Processing

The processing of data in the RNS parallels the processing of data for the same prob-

lem in two's complement notation, for the RNS-compatible operations of addition.

subtraction, and multiplication. Hardware implementation of these operations will

be discussed in the following chapter.

Scaling is a process that must be treated much differently in the RNS than in

two's complement. Whereas two's complement data may be scaled by shifting bits.

one place value for each factor of two, scaling a number in the RNS requires a lengthy

series of operations. Scaling is different from general division in that data is divided

by a predetermined constant and then rounded. Szabo and Tanaka explain the most

efficient type of scaling, in which the data is scaled by one or more moduli. The first

step in the scaling process is to round the number to a multiple of the intended scaling

factor. Let X be the integer to be scaled, and let Y be the scaling factor. If we round

20



X down to a multiple of Y, then the scaling problem is reduced to computing

X Y (2.1)
Y

Since Y will be one of the moduli or the product of several, the existence of its

multiplicative inverse modulo the other moduli is guaranteed by the requirement

that the moduli be relatively prime. The residues of X are therefore multiplied by

I-1,, within each of the RNS channels. The final step in tLe scaling problem is to

perform a base extension to determine the residues of the scaled result for the moduli

by which X was scaled. The base extension is similar to a mixed-radix conversion on

the moduli by which X was not scaled; the mixed-radix conversion will be discussed

in the next section [14].

The RNS scaling process will be demonstrated by an example, taken from Szabo

and Tanaka, in which a positive integer is scaled by two moduli. Lct the moduli be

m, = 2,m 2 = 3, m 3 = 5, and m 4 = 7. The integer

X = 89 - {1, 2,4,51

will be scaled by 15 = 3 - 5, yielding the result z = A. The solution is shown below.
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Moduli: 2 3 5 7

Residue representation of X 1 2 4 5

Subtract IX13 =2 0 2 2 2

2,3,5,7

3' 1 2 5
Multiply by i 1"'2

2,5,7 X-IX131 4 1 3'
3

Subuact iXlis=-4 0 -4 4

1 -0 4 2, 3l -

Multiply by I 1,

Enter 0 in missing columns 1 0 0 5 - ( -X1s = [
for base extension

Subtract 1 1 1 1 1

0 2 4 4

Multiply by II I. 234

1 2 2

Subtract 2 2 2 2

-200

Then 1z 3 + 21 = 0 and IzIs + 0 s = 0; hence, Iz3 = 2 and zI5 = 0.

Therefore, the residue representation of the scaled result [1] is {1,2,0,5} 5.

This example shows that it takes L multiplies and L additions (in each of the RNS

channels) to scale a number in the RNS, not including the final subtraction and

multiplication required to determine the final two residues of z. Remember that L is

the number of moduli in the system[14].

There are several observations that should be made concerning this scaling al-

gorithm. The first is that the number of operations is independent of the number

of moduli by which the integer is being scaled, except for the final subtraction and

multiplication to solve for z, which may be done in parallel anyway. All of the opera-
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tions are also performed within the separate RNS modular arithmetic channels. The

process is complicated slightly if we are interested in rounding to the nearest integer

instead of simply rounding down and if we need to scale negative integers as well as

positive ones. These cases are explained in more detail by Szabo and Tanaka [14].

2.3 Conversion From RNS to Two's Complement

There are two methods for converting an integer from the RNS to a coil entional two's

complement format. These techniques are called the Chinese Remainder Theorem

and the mixed-radix conversion and were presented in Chapter i. Examples of these

conversion methods will be given to help explain the processes.

The Chinese Remainder Theorem (CRT) is the classical conversion algorithm.

The equation from Chapter 1 is repeated here:

= X ( 7 in) mod M, where rhi = M/mi. (2.2)X= ri I ;m,_

The following example of the CRT is taken from a tutorial by Taylor [16]. Let

mi = 3, M 2 = 4, and M3 = 5, such that M = 60. The problem will be to convert

X={ 1.0,4} back to an integer. The values of rhi and their multiplicative inverses can

be precalculated:

ffni = 20, rh-i = 2

rn2 = 15, Th2
1  3

fl23 = 12, rhy' = 3.

The solution is

X = 1(20.11 . 213) + (15.10.314) + (12.14.31Is)1o

= 4.

The CRT requires one layer of modular multiplications and then a sequence of L

multiplications and L - 1 adds modulo M. The requirement for a modulo-M adder
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is the main disadvantage of the CRT. An RNS system will have components to do

modular arithmetic for the factors of M, but not for M itself.

The equation for the mixed-radix conversion (MRC) is

L-1
X = aN f- mi +. + a3 mlm 2 + a2mI + a,. (2.3)

The coefficients of the form a are called the mixed-radix coefficients, and each one

may take on values of 0, ... , - 1. The mixed-radix representation of a number is

a weighted number system because the value of the integer is a weighted sum of the

coefficients. This representation can therefore be used for magnitude comparison and

sign detection when negative integers are encoded. Szabo and Tanaka explain how

these coefficients are found through a series of nested subtract ind divisions. If

Equation 2.3 is first evaluated modulo ml, it is cl,.r tuat

Aim, = a,,

so that a, is simply tHe first residue digit. The next coefficient is found by noting

that

X - a,
I IM = a2

The division by m, is possible because its multiplicative inverse exists for all the other

moduli, by virtue of the fact that the moduli are selected to be relatively prime. The

remaining mixed-radix coefficients can be found by repeating this subtraction and

division, as demonstrated in the following example from Szabo and Tanaka.
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Moduli: 8 5 7 3

Residue represen- 3 = a, 4 2 1 al = jX18 = 3

tation of X

Subtract a, = 3 3 3 3 0
8,5,7,3 X a

0 1 6 1 X X-a,

Multiply by I 2 1 2

2=a 2 6 2 a2 [ xXs=2

Subtract a- = 2 2 2 2

5,7,3 X-aI0 4 0 8 -a 2

Multiply by K 3 2

5=a3  0

Subtract a 3 = 5 2

73 -L -a20 1 5

Multiply by . 1
1 = a 4  a 4 I lIMl2m3 ]r=4 [ s] 3

The mixed-radix representation of X is now {1,5,2,3}. From Equation 2.3 the in-

teger is

X = 1(8 .5. 7) + 5(8 5) + 2(8) + 3(1) = 499.

The mixed-radix conversion process requires L - I layers of subtractions and

L - 1 layers of multiplies within the RNS components. This is a count of the layers of

operations because the individual RNS channels will perform operations in parallel.

Conventional arithmetic is then required to multiply each coefficient by its weight

and add the components (L - 1 multiplies and the same number of adds.) While the

operation count is higher than for the CRT, most of the arithmetic is done within the

RNS channels and no modulo-M adder is required.
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Chapter 3

Performance of RNS Hardware

In this chapter, a set of performance measures for analysis of architectures for comput-

ing DFTs will be established. These measures will be applied to the basic hardware

components used in computing DFTs to determine the performance advantage of

RNS hardware at the building block level. These performance measures will then

be used in the next chapter as the basis for a comparison between binary weighted

number and RNS architectures for computing entire DFTs.

3.1 Performance Measures

Some primary concerns of a system designer for signal processing are speed, size, cost.

and power. The last three are directly related to each other for a given technology

base, so cost and power can be reasonably predicted given some measure of size. Speed

is the other main concern and must defined such that it reflects only an architecture's

ability to solve a problem quickly and not parameters such as the clocking scheme or

operation definition. Since the goal is to compare design architectures, we can choose

either high-level measures (gate delay and gate count) or low-level measures (such

as silicon area and actual time) for a specific technology, under the assumption that

these measures would scale consistently for a different technology.
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3.1.1 Speed

The primary goal in measuring speed is to compare the impact of choosing the RNS

over conventional arithmetic. In this analysis, the same algorithm, architecture, and

building blocks will be used to design two systems for computing DFTs, except that

RNS components will be substituted for two's complement components in one sys-

tem. Speed will be measured by the time to compute one DFT, which shall be called

latency. Pipelining and other techniques used to increase throughput will not be used

because their impact would be similar for both systems. The situation in which it

would not be similar is when pipeline registers are placed inside the arithmetic oper-

ators instead of between them. While allowing data to pass through at a higher rate,

pipelining does not reduce the actual time spent performing the necessary operations

on the data. In fact, the latency would increase due to the additional time of passing

data through the pipeline registers.

3.1.2 Size

The size of a system is a parameter which generally increases with its speed. For a

given technology and design approach, a system's speed can be increased by using

more hardware, but it is desirable to improve upon a system's speed without a pro-

portional increase in size. Other parameters of a system that increase with size are

cost and power; although the relationship may not be linear, these two parameters

can be reasonably estimated from size. Thus, the metrics used for comparing systems

will be limited to speed and size.

Determining how to measure size is a somewhat more difficult problem. Whatever

measure is used, it should be one that allows a relative comparison of two designs

independent ot the common technology used to implement them. One such measure is

gate count. Given the hardware components required for a design (adders, registers,

etc.), a library of standard cells can be used to determine gate count. One drawback

to this approach is that not all hardware translates directly into gates, an example
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being ROMs. ROMs are frequently used to implement arithmetic in RNS devices, so

the relative size between a ROM and other logic elements will have to be established.

The approach chosen here will be to develop an expression for the size and speed of

a ROM in terms of the size and speed of a full adder for a 3gm CMOS technology.

A full adder is used for comparison because it is the basic computational element for

addition and multiplication. After expressing these measures relative to those of a

full adder, conversions may be made to units such as equivalent gate count and delay.

3.1.3 Area-Time Metric

Comparing the performance of two or more system designs is complicated by the fact

that they generally have different sizes and different times. Sometimes one design

dominates the others in the sense that it has a smaller si. ,nd is faster; more gener-

ally, however, the designs cannot be directly ranked by both measures simultaneously.

To resolve this difficulty, we propose using an area-time product to objectively corn-

pare designs in terms of a single metric. Combining area and time into this single

metric assumes that there is a tradeoff in area and time for any component such that

their product remains approximately constant. The backing for this claim is the idea

that twice the hardware can be used to do twice as many operations in any given

time interval, thus halving the time per operation. This metric does not address the

cost of interconnecting these components, but it does reflect inherent spacc and time

requirements for computations performed by them.

3.1.4 ROM Layout vs. Full Adder

This section will develop a set of equations to approximate the size and speed of a

ROM relative to a full adder for a 3 pm CMOS technology.

Layout of a ROM

'[he construction of a typical ROM is shown in Figure 3.1. The ROM will be analyzed
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Figure 3.1: Construction of ROM.

in terms of the three main parts in the figure to determine an expression for the silicon

area and time delay. These measures will depend on the geometry of the ROM; ROMs

are usually laid out in the shape of a square, as opposed to a rectangle with different

dimensions. Let ni be the number of bits in the input, or address, and no be the

number of bits in each output word. For a ROM of 2'' x n. bits the ideal length of

each side of the memory portion would be vro2'', bits. Each column in the ROM

contains an no-bit word, so the number of columns from which the address bits must

select is

(3.1)
no

The number of address hits in the column selector is given by

[1 n 1 19 , 3212 2 12= n--log2 no (32

so that the number of address bit in the row decoder is given by

r-" nj+ Ilog2 n. (3.3)

where [r] represents the nearest integer to z (rounded). Care must be taken in

rounding so that c + r = n,.
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The analysis of the three parts of the ROM is discussed by Hodges and Jackson.

Both the row decoder and the core of the ROM are usually designed as a NOR array,

as shown in Figure 3.2. The pull-up devices may be either pMOS precharge or nMOS

depletion-mode devices [4]. For the row decoder, there are two rows of transistors for

each of the r row address bits. The row decoder has 2r output lines that connect to

the rows of the ROM core.

The NOR arrays get their name because they operate just like multiple-input

NOR gatcs. The output of each column in the array is the result of NORing all the

inputs to the nMOS devices. These devices are connected in parallel to ground, so

that a high input to any of them results in the column being discharged. Either the

nMOS devices or the contacts to them are placed selectively to generate the desired

output for each possible set of inputs. For the row decoder, each column will be

a word select line for the ROM. The transistors in that column are connected to

the proper set of address input bit lines, or their inverses, so that only one column

remains high for each possible address. The row decoder is rotated 90 degrees so that

the columns run horizontally; this allows the column lines to be connected directly to

the row lines of the ROM. Only one row line in the ROM will be high for any set of

inputs, and transistors are placed appropriately-in each row of the ROM to generate

the correct output word.

The simplest and most common type of column decoder is the tree decoder, shown

in Figure 3.3. This is simply a tree of nMOS transistors used as pass gates to select

from one of 2' columns, where c is the number of column address bits. There must

be one of these trees for each bit in the ROM's output word.

The area of a ROM is determined by the dimensions of the diagram in Figure 3.1.

The width of the entire ROM is approximately equal to the width of the row decoder

plus the width of the main memory portion. The height is approximately equal to

the height of the main memory plus the height of the column decoder. The inverters

for both the row and column address bits should fit within the space in the lower left
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Figure 3.2: NOR array.
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Figure 3.3: Column tree decoder.

corner.

The sizes of the row decoder and memory cells can be found by studying the layout

of a NOR array, shown in Figure 3.4. This figure shows the most compact layout of the

array on a lambda scale for a set of MOSIS scalable design rules. We will temporarily

use R to represent the number of rows and C the number of columns in the NOR

array. There must be 9A between each column, as shown, plus approximately 2,\

on the left side for spacing from the row decoder or other devices. The resulting

expression for the width of the NOR array is

WOR = (9C + 2)A. (3.4)

The height of the array depends on the number of rows, R. Figure 3.4 shows that there

is 16A for each pair of adjacent rows. Additionally, there is 19A\ on top for precharge

or loading devices and 8A on bottom for separation from the column decoder. The

final expression for the height of the NOR array is

HvOR = (16R/2 +8 + 19)A

= (8R + 27)A. (3.5)
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An expression for the height of the column decoder is now needed so that the

height of the whole ROM can be determined. The exact width of the column decoder

is not important because it is less than the width of the ROM core, as shown in

Figure 3.1. Figure 3.5 shows the layout of the column decoder. The height of the

column decoder can be expressed as

Hod = 18cA, (3.6)

where, again, c is the number of address bits in the column decoder.

The size of the entire ROM can now be found. The width is equal to the height

of the row decoder (before it is rotated) plus the width of the ROM core:

WRom = (8(2r) + 27)) + (9(2cn 0 ) + 2)),

v (i~r+ 9(2c)no + 29)A. (3.7)

The height of the ROM is en, .1 to the height of the ROM core plus the height of the

column decoder:

HROM = (8(2')+27)A+18cA

= (2(
r

+ 3) + 18C + 27)A (3.8)

The tota: area can now be written as

AROM = WROM X HROM

= (16r + 9(2c)no + 29)(2 (r + 3) + 18c + 27)A2. (3.9)

The timing analysis for the ROM begins with the following assumptions for the

process parameters:

Symbol Parameter Value

A 2 length of min transistor 1.5 am

RP.ol resistance of polysilicon 50t/square

C.. capacitance of thin oxide 500OF

Cd source or drain capacitance C913
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Figure 3.5: Layout of column decoder.
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The gate capacitance for a minimum size transistor, of 4.5pum x 3.0pm is

Cg = 4.5jim x 3.0um x 500uF/m 2

= 6.75fF. (3.10)

The parameters , and K., which are used in the equations that model MOS devices,

are estimated below for a 4.5gm x 3.0jim transistor:

width
length

=26- (3.11)
V

2

1 K. /2

= 13 A. (3.12)
V

2

The access time for the ROM can be expressed as

T.. = To, + Ta. + To1, (3.13)

where

T.o. = delay through row decoder

Tr m = delay through ROM cells

T'11 = dlav through column decoder.

The calculations for Tro and Tr,,,, are similar because both are delays through NOR

arrays. Hodges and Jackson analyze the delay through a NOR array by expressing

it as the sum of the switching time for the row lines and the charging/discharging of

the column lines. Let t, be the delay through a row in the NOR array and let t, be

the delay through a column. The delay through a row can be approximated by the

following equation for the 50% output transition for a uniformly distributed RC line

with a step input:

t, = .38RC, (3.14)
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where R is the total resistance and C is the total capacitance of the distributed line.

The delay through a column in the NOR array can be approximated by the time for

the p-type device at the top of a column to charge the column capacitance to the

50% point [4]:
tc = (3.15)

The values of R and C are calculated by using the parameters above and the geometry

of the layouts in Figures 3.4 and 3.5.

The delay through the row decoder, T,,,, will now be calculated by determining

the delays through the rows and columns within its NOR array. There are r bits in

the row decoder, and each bit plus its inverse go into separate rows in the NOR array.

yielding 2r rows. There are 2r columns, each driving a separate word select line in

the ROM core. For an array of 2r rows by 2r columns, the delay through a row is
9

t, = .38(2' x 9 x 50!Q)(2r x 6.75fF)

= 5.77 x [0- 4 × 4 (3.16)

To calculate the column delay, the column capacitance and average charging current

for a column must be found. Each column will have a transistor connecting it to each

of the input bits or its inverse, for a complete row decoder. Thus, each column has r

of the 2r rows connected to it, resulting in a column capacitance of

6.75fF
3 . (3.17)3

The worst case delay is when the depletion mode device at the top of a column must

charge the column from 0 to 5 volts. The average current, , is the average of

the current at 0 volts and the current at 2.5 volts output. The parameter K for the

depletion device is assumed to be 1 that for a normal nMOS device, and the threshold

voltage is assumed to be VT = -3v. At 0 volts, the depletion device has 5 volts across

it, but V( - VT = 5v - (-3v) = 8v, so it is in its linear region. Thus, the current at

the beginning of the charging is

lov = & ((5v - (-3v))5v -
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= 179/iA. (3.18)

At an output level of 2.5 volts, the transistor is still in the linear region, so the current

at this point is

12.5V = -K((5v - (-3v))2.5v - -)2

4 2
= 110pA. (3.19)

The delay through the columns in the row decoder is now

r x 6.75fF x 2.5vt' 3
-- 179gA + llOA

2

0.0389 x r ns. (3.20)

The total delay through the row decoder is now

T = (5.77 x 10- 4 x 'I' + 0.0389r)ns. (3.21)

The delay through the ROM memory cells can be calculated in a similar manner.

The size of the array is now 2' rows by no2c columns. The delay through a row is

given by

t, = .38(no2c(9)50fQ)(no2c6.75f F)

= 5.77 x 10- 4 no4cns. (3.22)

The delay through a column is given by

2r 675fF x 2.5v
179A+IlOA

2

= 0.0389 x 2t ns. (3.23)

The total delay through the ROM cells is

Tr,,, = 5.77 x 10- 4n o4c + 0.0389 x 2t ns. (3.24)

The delay through the column decoder can be approximated by using Equa.

tion 3.15 and assuming that the source and drain capacitances must be discharged by
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an nMOS transistor whose length is c times the length of each individual transistor.

The total capacitance is
6 75fF

C = (1 + 2c) . (3.25)
3

Since the length to width ratio of the effective transistor is c times normal, the currents

before and halfway through discharging are

I
Isv = T-IK,(5v - .6v)2  (saturation)

251.7
= 257A (3.26)

C

125V = -K((5v- .6v)2.5v (2.5v) 2 )

204.2
204.8 (3.27)

C

The average current is
251.7 + 204.8

avg-n = 2 pA = 228 jA. (3.28)

The delay through the column decoder is therefore

(1 + 2c)t!UF(2.5v)(2c)228pA

0.0493c(l + 2c)ns. (3.29)

The above results for area and time are summarized in Figures 3.6 and 3.7 respectively.

These plots show the area and time as a function of no, the size of an output word.

The three cases whcn n, is either no, no + 1, or 2no will later be shown to be of

primary interest for the ROMs used in RNS. The three curves, therefore, represent

these three cases. The layout of a full adder is now analyzed so that a comparison

can be made between it and a ROM.

Layout of a Full Adder

The schematic and layout of a typical full adder as given by Weste and Eshraghian is

shown in Figure 3.8 [211. This adder makes heavy use of transmission gates. Although
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other full adder designs axe possible, they require the same number of transistors (24)

and approximately the same area. The size of this adder, using the same 3/4m design

rules as for the ROMs, is 76A x 101A = 7,676A2.

The delay through the full adder can be estimated using Equation 3.15. The

critical delay path is from carry-in to carry-out. Figure 3.8 shows that the signal

must propagate through three gates: carry-in passes through an inverter, the inverted

signal passes through a pass gate controlled by tue inputs A and B, and the result

passes through another inverter. The worst case is when carry-in changes from 0 to

1. because then the output inverter will also change from 0 to 1. It will be shown

that the second inverter has a larger capacitive load than the first, so that the worst

case occurs when the second must charge the load from Ov to 5v through its p-type

device.

The capacitive load on the first inverter comes from the 4 source/drains of the

pass gates at that node and from the length of the polysilicon line. The capacitance

of this line is

30A x 1.5 m x .2 p F = 9fF.
A mm

The total capacitance is now

6 =4.75fF
C=4 + 9fF = 8fF. (3.30)

3

The average discharge current through an n-type device was previously found to be

228#uA. The delay through the first inverter can now be calculated:

18fF . 2.5v
tinyI  = 2 y- 228#A

= .197ns. (3.31)

The capacitive load on the pass gate is due to the 2 gates of the inverter it drives

and the polysilicon line connecting it to the inverter. The capacitance of this line is

m p16A x 1.5- x "2-PFm = 4.8fF.
A mm
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The total capacitance is

C = 2- 6.75fF + 4.8fF = 18.3fF. (3.32)

A good estimate of the average current through the pass gate is the average current

through an n-type device, 228jiA. The delay through the pass gate is

18.3fF. 2.5vt pass --

228yA
= .201ns. (3.33)

The capacitive load on the second inverter comes from the polysilicon carry-in

line of the next full adder, the 2 gates of its first inverter, plus the 2 source/drains of

the pass gate also connected to the carry-in line. The capacitance of this line is

mm

The total capacitance is now

C = 2.6.75fF + 2 675fF + 17.1fF = 35.1fF. (3.31)
3

The average current through a p-type device is approximately one half that through

an n-type, so the average charging current through this inverter is . 11411A.

The delay through the second inverter is

_ 35.1fF • 2.5v

= .770ns. (3.35)

The total delay from carry-in to carry-out is

Tf = 1.168ns. (3.36)

The area and speed of a ROM can now be normalized to a full adder by dividing the

results of Figures 3.6 and 3.7 by the area and speed of a full adder as just calculated.

These results are shown in Figures 3.9 and 3.10. Figure 3.11 shows the area-time

product of a ROM relative to the area-time of a full adder. The efficiency of ROM

layouts is apparent by noting that the area-time product of a 4-input, 2-output ROM

is slightly less than the area-time of a full adder.
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Figure 3.9: Area of ROM relative to a full adder.

3.2 RNS Computational Elements

Before delving into a performance analysis for the specific problem of performing

DFTs, an analysis of the individual computational hardware elements used in this

problem will be done. For DFTs, these elements are adders and multipliers.

3.2.1 RNS Adders

As mentioned in Chapter 1, there are at least three ways to implement modular

addition with digital hardware. The first is to concatenate the binary representation

of the residues and use the result as an address to a ROM look-up table which contains

the sum, modulo the proper integer, as shown in Figure 3.12. This method can be

used for multiplication also, with the result that these two operations will take the

same amount of time. For an n-bit modulus, 2"- < mi < 2', the ROM will have 22,h
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Figure 3.10: Speed of ROM relative to a full adder.

words of length n bits.

Soderstrand presents two other methods of performing modular addition [11].

The basic procedure is to add the two numbers like normal binary numbers and then

to correct the result by subtracting the modulus if the result exceeds the range of

numbers allowed by that modulus. There are two ways to do the correction. One

method uses a ROM to correct the n + 1-bit sum to an n-bit sum within the proper

range, as shown in Figure 3.13. While still requiring a ROM, the size of the ROM

has been decreased from 22,% to 2"'+1 words. Another method is to use a second n-

bit adder to add the value 2" - mi to the output of the first adder. If either adder

produces a carry, the corrected result is used; otherwise, the output of the first adder

is used. This scheme can be derived by starting with a two's complement system

that subtracts mi if the result of the first addition is greater than or equal to mi. Let

the addends be x and y such that 0 < x < mi,,0 < y < ini. In twos complement
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n
I/ -)2n

n ROM

Figure 3.12: Modulo mi adder using ROM look-up table.
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Figure 3.13: Modulo mi adder using correction ROM.

notation these each require n + 1 bits. The first adder computes = + y. which

requires n + 2 bits. The next adder computes : = Z - mi, which must fall in the

range -ni < 5 < ri - 1, an n + 1-bit twos complement number. If 2 is negative,

then z = z; otherwise, z = 2. This procedure can be simplified by noting that since

negative integers are not used for x, y, and z then only n bits are needed. Furthermore,

the most significant bit in and 24 can be handled by separate logic to select from

the two possible choices for z. The aegative of mi in an n + 1-bit twos complement

system has the same representation as 2' - mi for the first n bits of interest: this

is why the procedure can be interpreted as adding 2' - mi if the result of the first

addition is greater than m i - 1. A block diagram of this type of RNS adder is shown

in Figure 3.14. The adder can be further simplified by noting that if ni is fixed, then

the second adder can be customized to reduce its size. The second layer of full adders

can be replaced by the equivalent of half adders since one addend is always known.

An RNS adder constructed like Figure 3.14 requires two n-bit adders, an OR gate,

and n 1-bit multiplexors. The area of this adder is given by

ARNSadd = 2nAfa + Ao. + nAmu, (3.37)
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Figure 3.14: Modulo m, adder using two binary adders.

wahere

A = area of a full adder

AO = area of an OR gate

Am,, = area of a multiplexor.

Assuming A1  >> A0 , A,,, ,. the size of the adder can be approximated by

A RNs~dd .. 2n Ap/ . (3.38)

The time required to perform the addition is given by

TFNSadu = (n + 1)Ta + To + Tr:, (3.39)

where

T1 = delay through a full adder

TA = delay through an OR gate

TA, = delay through a multiplexor.
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The area-time products for the three types of modular adders are plotted together

in Figure 3.15. Each of these adders has a region in which it is superior to the other

two. The adders using ROMs are better than the one that uses dual adders for moduli

less than 23. Moduli larger than 23 require at least 4 bits, in which case the adder
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using dual n-bit adders dominates. Since the dual adder type dominates for moduli

of at least 4 bits and is almost equal to the other types of adders for 3-bit moduli, it

will be the one used for comparisons against integer adders.

3.2.2 RNS Multipliers

There are several methods of performing RNS multiplication that have been discussed

in the literature, some of which were explained in Chapter 1. The first and simplest

method is to use a ROM look-up table; the structure would be identical to the ROM

adder of Figure 3.12 except that it would be programmed for multiplication instead of

addition. This type of multiplier has the advantage of running as fast as the ROM's

access time, but the ROMs take up a large amount of area for larger moduli. If the

modulus has n bits, the address of the ROM will contain 2n bits. Moduli of 5 bits

(no larger than 32) require a ROM of lKx 5 bits. Each additional bit in the moduli

quadruples the size of the required ROM.

To alleviate this problem, two other types of multipliers have been proposed.

The first, discussed by Jullien, works for prime moduli mi and uses index calculus

as shown in Figure 3.16. A one-to-one "logarithmic" mapping is defined between

{g,} = {1 ... (mi - 1)} and {k,} = {0 ... (m, - 2)} via a primitive root a such that

g, = 1 k0", ,. (3.42)

Multiplication of the residues g, corresponds to addition of the exponents k, modulo

rni - 1:

IgngjI, - Jkn+k1 ', .

Multiplication is done by looking up the two indices of the multiplicands in ROMs,

adding them modulo in, - 1, and then using a ROM to get the product from the

resulting index [8]. Additional circuitry is needed to detect a zero since it has no

index. This procedure is analogous to performing multiplication using logarithms.

The hardware requirements are three ROMs of 2n x n bits and an n-bit modular
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Figure 3.16: Modulo mi multiplier using index calculus.
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Figure 3.17: Modulo rni multiplier using quarter squares identity.

adder; the time required for the process is equal to twice the delay through one ROM

plus the delay through one adder.

Another modular multiplier which reduces ROM sizes is the quarter squares mul-

tiplier presented by Soderstrand and Vernia and shown in Figure 3.17; it takes ad-

vantage of the quarter squares identity mentioned in Chapter 1 (13]:

zy (x + y) 2 
- (x - y) 2  (3.43)xy = 4

Because the multiplicative inverse of 4 does not exist for even moduli, this exact

procedure cannot be used for even moduli. However, Taylor has shown how this

multiplier can be modified for even moduli [15]. This usually would not pose a

problem anyway because the best choice for an even modulus among a set of moduli

would be 2 , so that conventional binary circuitry could be used and carries beyond

n bits disregarded. The hardware cost of the quarter squares approach is three n-bit

modular adders and two ROMs of 2n x n bits; the time required for the calculation

53



x y

n n n

Ade ubtractor

i+1 
n+1

Squaring Squaring
ROM ROM

n

Figure 3.18: Modified modulo mi multiplier using quarter squares identity.

is twice the time for a modular adder plus the delay through a ROM. The quarter

squares multiplier takes approximately the same amount of time as the index calculus

multiplier but reduces the size by one ROM in exchange for two more n-bit adders.

Also, its use is not restricted to prime moduli.

Alternatively, the quarter squares multiplier could be implemented as shown

in Figure 3.18. The initial addition and subtraction are performed with single n-

bit adders and correction ROMs, where the ROMs are programmed to correct the

sum/difference, square it, and divide by 4. This method has a possible advantage

because it eliminates two adders in exchange for an additional input bit in each of

the two ROMs.

A fourth way of doing modular multiplication is to multiply each bit of the multi-

plier by the multiplicand and then add the partial products with their proper weight-

ings by powers of 2. This is the same algorithm used in the most simple integer
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Figure 3.19: Modulo mi multiplier using modular adders.

multipliers. A diagram of this adder is shown in Figure 3.19. The size of this multi-

plier is given by

AFA-mlt = 3(n - 1)nAf, + 2(n - 1)A,, + 2(n - 1)nA,z + n2 Aand

, 3(n- 1)nAfa. (3.44)

Since all but the first multiplication of x by 2 is done simultaneously with the addi-

tions, the time required to complete the operation is

TPA-,-t = nTf, + (n - 1)((n + 1)Tf, + T,. + T,,,,)

;:t (n 2 + n - 1)T:,, (3.45)

The area-time products for these four multipliers are plotted together in Fig-

ure 3.20. The simple ROM look-up table is best for moduli of 4 bits or less, but

grows exponentially worse for larger moduli. The index multiplier appears to be the

best for moduli of 5-8 bits, but it has the disadvantage of only working for prime

moduli. The next best multiplier for moduli of 5-8 bits is the quarter squares mul-

tiplier. The quarter squares multiplier and modified quarter squares multiplier are
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Figure 3.20: Area-time products for four modular multipliers.

close, but the modified approach is better in the 2-6 bit range, which is the more

common size of moduli. For 4-bit moduli, the modified quarter squares multiplier is

close in performance to the ROM look-up; smaller moduli of 2 or 3 bits are seldom

used, and if they were used in parallel with larger moduli, they would have a relatively

insignificant contribution to the total area-time product. For this reason, the mod-

ified quarter squares multiplier will be considered the preferred modular multiplier

and will be used in comparing RNS to conventional arithmetic.
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3.3 Conventional Computational Elements

3.3.1 Adders

A conventional n-bit binary integer adder would require n full adders and have a

delay of n times the delay of each full adder, for an area-time product of

n 2.4 ,Tf, (3.46)

where A1p and Tfa are as defined above.

3.3.2 Multipliers

A simple integer multiplier is made of an array of full adders as shown in Figure 3.21.

Each row of adders adds another partial product into the result, with carries prop-

agating diagonally so that they are "saved" and added in at the following row. Not

all of the adders in Figure 3.21 are actually full adders. The first row and the first
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adder in the last row are half adders. The total size of the multiplier is given by
n

A,,It = n(n - 2)Afa + -Afa + n 2 A,,d

z (n 2 - 3n)Afa. (3.47)

The time to compute the product is dominated by the delay through the adders. Since

carries are saved, the delay is equal to the number of layers plus the time required to

add in all the carries after the final partial product is computed:

T,ut = 2nTfa. (3.48)

3.4 Side-By-Side Comparison

In a real RNS application, several modular adders would be working in parallel to

replace a larger integer adder. To compare the area-time products for these two

alternatives, the dynamic range for the integer adder must be broken into a product

of smaller ranges for each of the moduli.

Let b be the number of bits in the integer so that it has a dynamic range of

2b . If I moduli are used to perform the same addition with I modular adders, the

ideal size of each modulus would be 2 T(, or b/I bits. Of course, this is not really

possible because the I moduli must be relatively prime integers, which is generally

not the case if this simple formula is used; however, this formula provides a simple

expression for determining the best possible moduli given 1. The following three

examples demonstrate the problem of picking the moduli. For the first, let b = 8 and

I = 3. We desire 3 moduli with approximately 8/3 ; 2.67 bits per moduli. Since

moduli must be integers, the largest modulus must have at least 3 bits. In this case,

the moduli set {8,7,5} will work. The dynamic range is 8 • 7 • 5. = 280. The total

number of bits required for the moduli is 3 + 3 + 3 = 9, 1 more bit than for the integer

equivalent. For the second example, let b = 16 and I = 3. The largest modulus will

have 16/3 bits, so the set {64,63,17} is chosen. The dynamic range is 68,544. This
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time, 6 + 6 + 5 = 17 bits are needed to encode 16-bit integers. The last example uses

the same dynamic range as the previous example, except that five moduli will be used

with the intention of increasing computational speed by using smaller moduli. We

need approximately 16/5 = 3.2 bits per moduli. The set {16,15,13,11,3} will work in

this case. Now, however, the total number of bits required is 4 + 4 + 4 + 4 + 2 = 18,

resulting in 2 extra bits.

3.4.1 Adders

With b/ bits per moduli, the RNS adder will have I modular adders, each of which

has an area-time product of 2t(t + 1)AjaTfa. The larger integer adder has an area-

time product of b2AfjTfa, which means the ratio of the RNS area-time to the integer

area-time is
2(b + 1) (3.49)

bl

RNS will have a performance advantage if this ratio is less than 1, which holds if

2b
I > b (3.50)

In order for this inequality to hold for even the largest dynamic ranges, there must be

at least 3 moduli. The following section will develop results showing the performance

advantage in using RNS for multiplication.

3.4.2 Multipliers

The RNS multiplier used for comparison is the modified quarter squares multiplier.

There will be a multiplier for each of the I moduli of b/i bits, for a total area of I

times the area of a i-bit multiplier and speed of one t-bit multiplier.

Because the area-time product for the RNS multiplier is much more complicated

than that for the adder, a simple expression illustrating its performance advantage

over conventional arithmetic is not possible. Instead, Figure 3.22 shows the ratio

of the RNS multiplier's area-time product to the conventional integer's area-time
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Figure 3.22: RNS/Integer multiplier area-time ratio for different numbers of moduli.

product. Each curve plots the ratio for a different number of moduli. This ratio can

be as low as 1/20 for large multipliers with many moduli.

3.4.3 Registers

Registers are not computational components, but because they are used so commonly

to store data temporarily and to pipeline systems both within and between compo-

nents, their implementation should be examined. For the most part, registers will

be almost identical for integer and RNS systems that have the same dynamic range.

The real difference is that RNS will require one or two more bits in each register to

match the dynamic range of an integer system. This is apparent if one looks back

to Section 3.4 in which it was stated that a dynamic range of 2b cannot truly be

factored into I moduli all of size 2(f ) . It is also impossible to make the moduli set be

{ 2b1 , 2h ... , 2 b } such that E1=1 bi = b because only one of the moduli may be of the
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form 26, if they are to be relatively prime. The other moduli must be prime numbers

with no common factors. Thus, the actual RNS dynamic range is less than the sum

of the bits required to represent all of the residues, and larger moduli with more bits

are needed to realize the b-bit dynamic range of the integer system. In practice, this

usually amounts to one or two more bits.
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Chapter 4

DFT Algorithms

The problem of computing DFTs, for which the application of RNS arithmetic is

being analyzed, will now be discussed. As explained in Chapter 1 there are several

ways of computing Discrete Fourier Transforms (DFTs), all of which use some divide-

and-conquer technique to break the problem into smaller pieces. The DFT is defined

in Oppenheim and Schaefer 1101 as

N-I

x[k] xjn]WN, (4.1)
rn=O

where WN = e-13. A direct computation of equation 4.1 requires N multiplies and

N - 1 additions for each of the N output points, for a total operation count pro-

portional to N2. Although the equation can be manipulated for real sequences to

eliminate trivial operations, the operations are generally complex, requiring several

computations on the real and imaginary parts of the operands. The algorithms dis-

cussed in this chapter all attempt to reduce the number of operations required to

compute the DFT by taking advantage of the periodic nature of equation 4.1. It will

be shown that the Winograd Fourier Transform Algorithm is the most efficient for

computing DFTs in the residue number system, and that RNS arithmetic has the

greatest comparative advantage, if any, over radix-2 arithmetic for this algorithm.
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4.1 Cooley-Tukey FFT

Burrus and Parks [3] explain the derivation of the many DFT algorithms, including

the popular Cooley-Tukey Fast Fourier Transform (FFT). The length of an FFT

should ideally be a highly composite number, with the most common FFTs having a

length of the form b', where b is usually 2. The FFT breaks the transform into smaller

pieces by factoring the length N into its factors. Each layer of an FFT removes one

more factor from the original length. If the length N is factored into N1 and N2, then

the following mapping is made for the time and frequency indices:

n = N2n 1 + n2  (4.2)

k = k, + Nk 2, (4.3)

such that

i[ni,n j = x[n] (4.4)

,k[k,,k2  = X[k]. (4.5)

The DFT of Equation 4.1 can now be written as

.V2 -1 N1-1

, [k, = _ z _[n,,n 2 lW']VV kw2k1wVk2. (4.6)
n 2 =0 n=O

Examination of Equation 4.6 reveals that first N1-point DFTs are performed for

the N2 values of n2 in the inner summation. Then, each of the resulting points is

multiplied by a twiddle factor, the term W r2kl. The outer summation is an N2-point

DFT which must be computed for each of the N values of k1 . Since FFTs are usually

performed on sequences whose lengths are a power of 2, N is usually 2 and N2 = N/2.

The N2-length DFTs are performed by doing another mapping and removing another

factor of 2. Thus, all DFTs are reduced to 2-point DFTs, called butterflies, which

are simply the sum and difference of two data points[3].

The resulting flowgraph for an 8-point FFT is shown in Figure 4.1. Because of the

index mapping, the output points are in bit-reversed order. This algorithm is called
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Figure 4.1: Flowgraph of an 8-point FFT [10], p. 602.

the decimation-in-frequency FFT. If N 2 were chosen to be 2 so that N = N/2, the

flowgraph would have evolved into the decimation-in-time FFT, in which the input

points are in bit-reversed order.

The Cooley-Tukey FFT greatly reduces the number of operations required to com-

pute the DFT from the number required in straightforward evaluation of Equation 4. 1.

If the length of the DFT is N = 2' , then there will be m layers in the FFT flowgraph.

Each layer requires N complex additions (or subtractions) and N/2 complex multi-

plies, as seen in Figure 4.1. Since m = log 2 N, the total operation count is N log 2 N

complex additions and 2 log 2 N complex multiplies. (Actually, the last layer requires

no layers of multiplies so that the number of multiplies is NV(log 2 N - 1) = 2 log 2 '-

The expression V log 2 N is generally used for the number of multiplies because it

assumes a system that is not designed to detect this irregularity.)

Implementing the FFT with integer arithmetic requires a fair amount of scaling

of the data. Each layer has one add and one multiply, which continually increase the

dynamic range required by the system if the numbers are not scaled. An addition

doubles the dynamic range, or adds one bit. The twiddle factors are complex expo-
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nentials, which reduce to sines and cosines. Ideally, these multiplies do not change

the magnitude of the points; however, with integer arithmetic, the twiddle factors

must be scaled up by a factor of 2 for each bit of resolution desired. Of course, in

two's complement notation these extra bits can be immediately removed after the

multiplication by shifting the data an equal number of bits to the right, since each

shift corresponds to a division by 2. The extra bits may be discarded (truncated) or

used to round the least significant bit.

Scaling is not so trivial with RNS arithmetic because it is not a weighted number

system, as discussed in Chapter 2. It was shown that the number of operations

required to scale each number is on the order of 2L, where L is the number of moduli.

Because of the time required to scale in the RNS, it should be avoided whenever

possible. A larger dynamic range with respect to the size of the data words will

reduce the amount of scaling that must be done while performing the transform. If

we let bd represent the number of bits in the data and let b, represent the number of

bits in the twiddle factors, or coefficients, then the range will grow by b, + 1 in each

stage of the FFT. After the first stage, the required dynamic range is bd + b, + 1 bits.

The moduli chosen in an RNS implementation of the FFT must yield a dynamic range

at least this large in order to allow the completion of one addition and multiplication

on a pair of data points before scaling them back to the original range. If the dynamic

range were increased to bd+2b,+2 bits, then two stages of the FFT may be completed

between scaling points.

4.2 Prime Factor Algorithm

The prime factor algorithm (PFA) for the DFT is also discussed by Burrus and Parks.

Developed by Good, Thomas, and Winograd, this algorithm also maps a sequence

into a multi-dimensional array so that smaller DFTs may be performed along each of

these dimensions. For the PFA, however, the transform length is broken into relatively
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prime factors. These factors will be the lengths of the dimensions along which the

smaller DFTs will be performed. The length is usually chosen so that the factors

fall into a set of lengths for which Winograd has developed a set of small-N DFT

algorithms which minimize the number of multiplies. These small DFTs are usually

primes or powers of primes, the most common being 3, 5, 7, 9, and powers of 2 up to

16. Other lengths are possible but are not as efficient. Algorithms for longer lengths

become exponentially longer and more difficult to derive [3].

The PFA mappings for n and k involve modular arithmetic. If the length N is

factored into N, and N2, the mappings, given by Burrus and Parks, are

n = IN2 nl + NIn 2IN (4.7)

k = jN"ININ 2k, + INf'IN2Nik2 IN (4.8)

Note that k, = kI,v,, and that equation 4.8 is the Chinese Remainder Theorem.

The mappings for n and k may also be reversed. These mappings load and unload

the points along extended diagonals of a two-dimensional array. The original DFT

equation now becomes [3]

N2 -1 NJ - I

X(ki,k 2 ) = (nln 2 ) (4.9)
n2=O n--O

This is a pure two-dimensional DFT; each of the summations is an independent DFT.

the order of summation can be interchanged, and there are no twiddle factors. For

mappings into more than two dimensions, ,V1 or .V2, or both, may be further factored

and the PFA used to break the .V1- and .VN2-point DFTs into smaller pieces. A diagram

of the PFA is shown in Figure 4.2 for a 15-point DFT. The sets of "row" and "column"

DFTs are done using Winograd's algorithms, which consist of a set of additions, a

set of multiplications, followed by another set of additions.

The operation count for the PFA can be found by totalling the number of op-

erations required in each stage. The number of operations required for each of the

small length-Ni DFTs is shown in Table 4.1. If the transform length is factored into
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Figure 4.2: Tw, -.z,or prime factor algorithm [3]@p. 63

Table 4. 1: Number of real operations required for length- N DFT of real data (double

for complex data)[a].

N Total Multiplies Multiplies By One Adds

3 3 16

4 4 4 8

56 1 17

7 9 1 36

8 8 6 26

9 11 1 43

16 18 8 74

67



J dimensions, such that N • N2 ... Nj = N, then there will be N/N N,-point

DFTs for i = 1 .. , J. If Ai and Mi represent, respectively, the number of adds and

multiplies for the length-Ni DFT, the total numbers of adds and multiplies are given

by

A = Z-A, (4.10)
i N

M = Z-M . (4.11)
i---

The scaling problem exists for the PFA just as it does for the FFT. The adds

and multiplies within each of the layers of DFTs increase the range of the data. In

order to determine how much the range expands, more must be known about the

small DFT algorithms. As explained above, there is first a layer of additions, called a

preweave, that usually leads to a small data expansion. This is why the additions in

the column DFTs of Figure 4.2 are represented by a trapezoidal block. Next there is

a single layer of multiplies, in which each of the pieces of data out of the first stage is

multiplied by a coefficient that is a combination of twiddle factors. This is followed

by another set of additions, called the postweave, that yields the original number of

data points. Normaly, the data grows by a factor equal to the transform length in a

DFT. An Ni-point transform should therefore add log 2 Ni bits onto the range of the

data. If the coefficients in the multiply stage are scaled up to integers by multiplying

them by 2b° , then the data will grow by log 2 Ni + b, bits in the ith stage of the PFA.

Again, the alternatives available for reducing the number of scaling operations are to

either start with a larger dynamic range or to use coefficients with fewer bits, which

decreases accuracy.

4.3 Winograd Fourier Transform Algorithm

The Winograd Fourier Transform Algorithm (WFTA), not to be confused with Wino-

grad's algorithms for computing short DFTs, goes one step beyond the PFA by nesting
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Figure 4.3: A 15-point WFTA [3],p. 71.

the three layers of operations required within each of the short DFTs. The same input

and output mappings used for the PFA are also used in the WFTA. Taylor describes

how the preweave, multiply, and postweave stages of the small DFTs can be viewed as

matrix operations on a vector of points. Letting V' and X' be vectors of the reordered

input and output points, respectively, a small-Ni DFT can be written as

X' = SN, CN, T, (4.12)

where Tv, and SN, are incidence matrices (i.e., they contain small integers or fractions.

only ±1 and 0 for very short DFT lengths), and CN, contains elements only along

its diagonals. The WFTA rearranges these operators so that the data points first

pass through all the preweave layers of additions, then through all the multiplication

stages, and finally through the postweave stages(17]:

= (S, *. * S.2 S.r )(CNj * * C.NCN, )(TV * * TN2 TN, )±'. (4.13)

A diagram of this procedure for the 15-point DFT is shown in Figure 4.3. Since the

multiplication stages are each point-by-point multiplications of the data by coefficients

derived from twiddle factors, the separate layers of multiplications may be combined

into one set of multiplications by coefficients that can be precalculated. This reduction

to one layer of multiplications is the primary advantage of the WFTA.
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The operation count for the WFTA is slightly more complicated than for the FFT

or the PFA, and it depends on the order of the stages. Let the length N be broken

down into the J factors N1 ,..., Nj, which are the lengths of the small DFTs. We

will also assume that this also represents the order of the different stages. Let Ai and

Mi represent the number of adds and multiplies, respectfully, in the ith stage. Mi is

also the number of intermediate points, due to data expansion, in one of the Ni-point

DFTs. The total number of adds is given by

A = (Mki + 'N) A,. (4.14)

i=1 \k=1 k=i+l

The number of multiplies is simply the product of the multiply count for each of the

short DFTs:
J-i

Af = "i Mi. (4.15)

Since the multiplies in the WFTA are nested together, multiplications by one in the

short DFTs must be counted since the corresponding factors in the following stages

are generally not one.

Scaling is not so big a problem with the WFTA as it is in the FFT and PFA

because there is only one layer of multiplications by coefficients scaled up to integer

values. Using the same notation as above, the total dynamic range required for the

WFTA (in bits) is

b = bd + b, + log 2 N. (4.16)

The ideal point at which to scale the data is after the multiplication stage or after

the entire transform.

4.4 Comparison of Algorithms

Table 4.2 shows the number of operations required by the three algorithms for varying

DFT lengths. Implementations of the three DFT algorithms in the RNS have been

compared by Taylor. Because scaling is the primary weakness of the RNS, Taylor
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Table 4.2: Comparison of operation counts for DFTs of complex data.

FFT PFA WFTA

N Factors Mfiltiplies Adds Multiplies Adds Multiplies Adds

63 9.7 284 1236 198 1394

64 26 768 1152

120 8.3.5 460 2076 288 2076

126 2.9.7 568 2724 396 3040

128 27 1792 2688

240 16.3.5 1100 4812 648 5136

252 4.9.7 1136 5952 792 6584

256 28 4096 6144

504 8-9.7 2524 13164 1584 14428

512 29 9216 13824

1008 16 .9 .7 5804 29100 3564 34416

1024 210 20480 30720

2048 211 45056 67584

2520 8-9 .7. 5 17660 82956 9504 99068
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bases his comparison of the three algorithms on the ratio of transform operations

to scaling operations. He shows that because the WFTA has the smallest ratio of

scaling operations to transform operations, the RNS will have the greatest compara-

tive advantage over a two's complement system for this algorithm. In fact, if scaling

were to be done after the entire WFTA and if no more processing were required after

the transform, the scaling could be effectively eliminated by incorporating it into the

RNS-to-two's complement conversion algorithm[17]. The advantage of the WFTA is

apparent from the previous parts of this chapter and from Table 4.2 in which it is

shown that the WFTA minimizes the number of multiplies. Although the RNS is

generally very efficient at multiplication, these multiplications are by small constants

which may each have been scaled up by approximately 6-8 bits, depending on the de-

sired accuracy. The main disadvantages of the WFTA are that it requires a complex

reordering of the data at the input and output and that it is not in-place because of

the data expinsion in the multiplication stage. Also, because the coefficients in the

multiplicatioa stage are determined by nesting and combining the multiplication lay-

ers in the small DFTs, a new routine must be developed for every transform length,

unlike the Fj'T. These are the primary reasons why implementations of this algorithm

are uncommon even in conventional two's complement arithmetic. However, since the

objective he,," is to determine the relative advantage of using RNS, the WFTA is an

ideal focus f r comparison because it provides the greatest possible chance for the

RNS to outp irform two's complement arithmetic. Also, since the primary reason for

using RNS %ould be to increase performance despite the difficulty of using uncon-

ventional ari, -metic, the WFTA may be a more likely choice because of its minimal

multiplication count.
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Chapter 5

Performance Comparison

The performance of RNS and two's complement systems for computing DFTs will

now be compared using the area-time metric. Chapter 3 developed expressions for the

area-time products of the basic components in RNS and two's complement integer

arithmetic. Chapter 4 discussed the possible DFT algorithms and the Winograd

Fourier Transform Algorithm was found to be the most appropriate for RNS. In

addition, operation counts were found for the different size WFTAs. The number

of adds and multiplies required for the transform, plus the additional operations

required for conversion and scaling, are now combined with the area-time measures

for the individual components to determine such a measure for the two systems.

5.1 System Area-Time Products

The area-time products for the systems being compared will take into account the

addition and multiplication operations only. Area-time products for the adds and

multiplies can first be developed separately:

(AT).dd = (AT)adde, x #adds (5.1)

(AT)rult= (AT),utpitev x #multiplies. (5.2)
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These approximations are relatively straightforward. It would take a single adder

a time equal to the number of adds times the time per add to do all the adds.

Alternatively, assuming the adds could be ordered properly, k adders could perform

the same number of adds in - times the above time, but with k times the size.

The other part of the problem is to combine (AT),dd and (AT),,,It into a sin-

gle figure. We will add these two quantities, which reflects the area-time for the

most efficient system, in which the hardware is perfectly allocated between additions

and multiplications. Since the problem is not finished until both the additions and

multiplications are done, we are interested in finding

AT = min((Adi + A,,,I) max(Tadd, Tuit)). (5.3)

Assuming that ,pTop is constant for both addition and multiplication, the total

area-time, AT. will be minimized when

Tadd T , T.m (5.4)

If one of these times were smaller than the other, the corresponding area could be

decreased without affecting the system's time, thereby reducing AT further. The

desire to make the adds and multiplies take the same amourt of time so that they

may be done together may seem contradictory, since the WFTA, as explained in

Chapter 4, ends with a set of output additions. However, when there is a constant

stream of data and DFTs to perform, making these two sets operations take equal

times minimizes the average time for an efficient program and controller. When

Tdd = T,,,mt, Equation 5.3 reduces to

AT = (AT),,add + (AT),,,,1. (5.5)

5.2 Analysis of Problems

The example DFT problems were analyzed by breaking the problem into several parts.

First, the size of the DFT, number of bits, and RNS system are defined. The number
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of bits in the data and coefficients, bd and b, respectively, can be chosen depending

on the resolution desired. The required number of bits for an N-point WFTA, given

by Equation 4.16, is

b = bd + b6 + log 2 N. (5.6)

The next step is to determine the number and size of the moduli for an RNS system.

To show how the performance changes with the number of moduli, we will let I vary,

usually from 3 to 8 moduli. A simple approximation for the size of the required

moduli is I bits.

With the system defined, the next step is to determine the area-time products for

the modular adders and multipliers. The general formula is

ATcomponent = (1. size of component) • (time for component). (5.7)

The same is also done for two's complement components, using the original b-bit

range. The number of operations to be performed by the components will depend on

the size of the DFT and on the number system. For two's complement arithmetic,

the number of operations are given in Table 4.2 and can be represented by ADFT and

.MDFT. For RNS, there is also the requirement to convert and scale the data. For

complex data, conversion to RNS requires one ROM lookup per point. Following the

DFT, the data may be scaled or converted to two's complement, but usually not both.

(If so, the scaling may be done after conversion, at which point it is essentially a "free"

operation.) Either of these processes takes on the order of I adds and multiplies in

each RNS channel per point. A mixed-radix conversion actually requires I - 1 of each

operation, but requires I - 1 more after the coefficients are found. A safe assumption

is that there are at least I operations, the number required for scaling. Since we

have complex data, there are 21 adds and the same number of multiplies. The total

numbers of RNS operations are given below:

Add 3Ns = AddDFT + 21. # points (5.8)

MultRNS = MUltDFT + 21. # points. (5.9)
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Figure 5.1: Area-time products for systems performing WFTAs.

The area-time products for the two systems can now be found by multiplying the

area-time for each component by the number of corresponding operations and adding

the area-time products for the two types of operations.

Results comparing RNS and integer systems are shown in Figure 5.1. T' se results

were generated with Matlab; the script file is included in the appendix. The lines

show the area-time products versus transform length for different numbers of moduli

and for a two's complement integer system. The number of bits in the data. bd, and

in the coefficients, be, is assumed to be 8. The plot suggests that RNS can provide

a significant performance advantage if at least 4 moduli are used. However, these

results were generated with the ideal assumption that all of the moduli had b/ bits.

The results of Figure 5.1 may be made more realistic by changing the way the

moduli are selected. In Chapter 3, it was noted that k may not be an integer and

that not all of the moduli can be of the same. The moduli selection may be made
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the number of moduli. The Matlab script file is again included in the appendix. Note

that the RNS with at least 4 moduli can still outperform conventional arithmetic, but

the performance advantage has been reduced. For the 504-point DFT with 7 moduli,

the advantage has been reduced from a factor of 4 to a factor of 3.

We will now further restrict the selection of moduli by recognizing that not only

must the moduli be different, but they may not all be of the form 2b". The first

modulus is usually chosen to be of this type, and the second to be of the form 2b', - 1,

but other moduli can not be even or contain any other factors in common with the

previous moduli. This means that there is some penalty in terms of dynamic range loss

from the ideal bi-bits, as discussed in Chapter 3. This penalty is much more significant

for large numbers of moduli. The actual penalty depends on the desired range and

exact number of moduli, but an average provides a good approximation. Studying a

few examples for 20-30 bit ranges has shown that the average penalty is abcut 0.2

bits for 5-moduli systems, 0.25 bits for 6 moduli, and 0.43 bits for 7 moduli. RNS

moduli can be chosen to provide an adequate dynamic range for different problems,

taking into account this loss; the results for this approach are shown in Figure 5.3.

The maximum performance advantage has now been reduced to about a factor of 2.7.

A final plot is now included which compares the results when the two's complement

system is made more realistic by recognizing that it need not have the same range as

RNS because of the ability to scale quickly whenever needed. The required number

of bits for a minimal amount of scaling is approximately the original number of bits,

bd, plus the maximum of b, and log 2 N. This allows for the completion of at least the

preweave stage before scaling, but also provides enough dynamic range to complete

the multiplication. These results are shown in Figure 5.4. Under this scheme, the

integer system has approximately .87 times the area-time of the best RNS system for

a 504-point DFT.

The analyses in this chapter have compared RNS to two's complement systems by

calculating an area-time product based on the area-time products of the basic com-
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Figure 1.3: Comparison of two's complement and RNS systems using dynamic range

penalty in moduli selection.
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putational components and the numbers of the different operations. The computed

values may not be obtainable in practice because there has been no accounting for

required registers, controllers, and interconnect. However, as previously stated, our

goal is to determine whether RNS has an advantage base'3 purely on its efficiency

in performing arithmetic. Non-computational components have not been addressed

because these parts would be nearly identical in the two types of systems. While

RNS is competitive with two's complement arithmetic in a strict "apples-and-apples"

comparison of efficiency in performing a WFTA, RNS is the not the clear winner when

realistic assumptions are made about how such a problem would really be solved in

two's complement. The most important difference is that a two's complement system

would not have to begin with a dynamic range large enough to solve the problem

without scaling in order to successfully compute the DFT.
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Chapter 6

Conclusions

6.1 Performance of RNS

The results of Chapter 5 show that RNS is not a clear winner over two's complement

for the problem of performing WFTAs. RNS initially appeared to have a significant

advantage, largely due to the small size and delay of the ROMs used in the quarter

squares multiplier. In Chapter 3 it was shown how favorably relatively small ROMs

compared to full adders in terms of size and speed. However, this advantage is

outweighed by the disadvantage of not having an efficient method of scaling and by

the necessity of converting data back to two's complement through a lengthy series

of operations.

These results for the WFTA indicate that RNS does not provide an advantage

over two's complement for the general problem of computing a DFT. In Chapter 4 it

was shown that amoug the most efficient DFT algorithms known, the WFTA provides

RNS with the greatest chance of outperforming two's complement. This is because

there is only one layer of multiplies along the data path, thus minimizing the growth

in dynamic range due to multiplication by constants scaled up to the desired number

of bits of resolution. Since RNS does not appear to be more efficient than two's

complement for WFTAs, it will not be better for other algorithms, such as the PFA
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Figure 6.1: General block diagram of system using distributed arithmetic.

and FFT.

6.2 New Ideas

The size and speed of relatively small ROMs suggests that they may be used to replace

computational components working on conventional two's complement arithmetic, if

they can be used in situations where a small addressing space is possible. A possible

application is in distributed arithmetic, in which data to be processed is fed into

components in a bit-serial fashion. The components process the data and continuously

shift and add in results for successive bits such that there is also a constant stream

of bits coming out. These bits can be immediately used by the next component, even

though the previous component is still working on the more significant bits of the

same piece of data. A general example of this technique is shown in Figure 6.1.

Distributed arithmetic may be used with ROMs to implement the series of opera-

tions needed to compute a radix-2 or radix-4 butterfly used in a Cooley-Tukey FFT.

A diagram of a radix-4 butterfly implemented in distributed arithmetic is shown in

Figure 6.2. Here, ROMs are used to multiply three of the four outputs by precom-
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Figure 6.2: Radix-4 butterfly using distributed arithmetic.

puted twiddle factors. Since the data comes in one bit at a time, the ROMs need

only contain two address lines-one for the real part and one for the imaginary. As-

suming that the twiddle factors are represented by 8-bit two's complement numbers.

the ROMs will output 9-bit numbers representing either the real or imaginary part of

the product of the twiddle factor with the real and imaginary parts of the data repre-

sented by the two current bits. The ROMs produce 9-bit products because each part

of the complex product requires a sum of two 8-bit products. Since each of the two

layers of adds before the complex multiplication add another bit to the result, there

is a total growth of 11 bits in the range of the data passing through the component.

The area and time of an FFT implemented by connecting cells of the form shown in

Figure 6.2 into a large array can now be computed. We will calculate these measures

for a 256-point FFT, a convenient size since 44 = 256. The butterfly can be broken

down into

* 16 full adders/registers for the 8 complex adds in the butterfly,

e 2(b, + 1) registers to delay the first complex output, multiplied by 1,

e 6 ROM/accumulate systems for the results of the three complex multiplications,
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each with the following:

- one 22 x (b, + 1)-bit ROM

- a (b, + 1)-bit full adder

- 2 (b, + 1) registers.

The area of the butterfly is

(16 + 6(b, + 1))full adders + (16 + 14(b, + 1))registers + 6(22 x (b, + 1))-bit ROMs.

We will assume that a 1-bit register is about the same size as a full adder and that

b, = 8, as before. From the formulas developed earlier, the size of a (22 x 9)-bit ROM

is about 1.12 full adders. The above expression reduces to an area of 219 full adders.

A 256-point FFT using radix-4 butterflies will have log 4 256 = 4 layers, each with

" = 64 butterflies. The total area is
4

(64 - 4) x 219 = 56,064 full adders.

The time estimate begins with an estimate of the clocking period. The access time

for the given ROMs is approximately .45 times the delay of a full adder. The worst

case delay is one ROM look-up, a one-bit add, and storage in a register. This total

delay can be estimated to be the delay of 2.5 full adders, assuming the register is the

same speed as a full adder. It was found above that there is a growth of 11 bits in

the range of numbers passing through each butterfly. Since there are 4 layers, the

total growth is 44 bits. Assuming the original data has 8 bits, it will take a total of

52 clock cycles for the last bit of data to come out. Bits 9-52 of the input will be

sign extended. The total time to perform the FFT is now

52 • 2.5 = 130 full adder delays.

The area-time product is

56,064. 130 = 7 ,288,320(AT)FA
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In Chapter 5, it was found that the best area-time product for an RNS system

doing a comparable WFTA (252 points) is 10,011,000. The best case is when 5 moduli

are used. When the two's complement system is modified to allow a smaller dynamic

range in exchange for scaling, it achieves an area-time product of 7,749,056 for the

504-point WFTA. Neither of these two measures include the cost of the registers

required to connect or pipeline the computational components, yet the distributed

arithmetic system, which takes registers into account, outperforms both. In addition,

the distributed zrithmetic system is implementing the DFT via the FFT, instead of

the WFTA. The measures above account for arithmetic computations only, so the

systems using the WFTA have an inherent advantage. The FFT implementation

described above, however, is computationally more efficient, yet does not require the

complicated reordering of the input and output points as does the WFTA. Also, if

we allow rounding in intermediate stages, then the time per problem is much less

because it will not be necessary to wait for 52 bits of output.

6.3 Suggestions for Further Research

A promising area for further research now is the use of distributive arithmetic for

computing DFTs. The quick analysis above shows that this approach appears to

have major advantages over conventional arithmetic, especially when ROMs are pro-

grammed to implement operations such as complex multiplication, which normally

requires a series of operations on just a few sets of inputs. With more work, this

technque may be refined to further reduce the size and time required by the system.

The RNS does not show any clear advantages over two's complement for the

problem of computing DFTs. The major disadvantage is the growth in dynamic range

when DFTs are calculated. This growth is worse for RNS because the twiddle factors

of the DFTs must be scaled up to integer values but cannot be easily scaled back down.

RNS would be more suitable for problems that deal mainly with integers and that do
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not pose dynamic range problems. One application that has been considered is in the

design of an address generator for a system using the PFA or the WFTA. The input

and output reordering equations for these algorithms were presented in Chapter 4 and

were found to be based fundamentally on modular arithmetic. The different modular

components could compute the parts of multi-dimensional addresses independently

for a memory oriented towards this kind of addressing. This application would also

deal exclusively with integers and would not pose problems of dynamic range.
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Appendix A

Matlab M-files



funct ion a-arom(no)

nj=[ no, (no+ones(no))' 2*no'Ij';

nozl; 1; 1]*no;

c-round(O.5*ni-O.5*(log(no)/log(2))-.OOO1);

r-round(O.5*ni+O.5*(log(no)/log(2))+.OOO1);

%.ROM layout area in lambda units

wl=16*r+27. *ones (no);

w2=9 .*no .*exp(c*log(2) )+2. *ones (no);
wwl+w2;

hl=exp(r*log(2) )*8+27;

h2=18*c;

hhl+h2;

a=w.*h17676; %scale to area of full adder
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function a-aromna(ni,no)

c-round(0.S*ni-0.5*(log(no)/log(2))-.0001);

rinround(0 .5*ni+0 .5*(log(uo) /log(2) ) +.0001);
%.ROM layout area in lamnbda units

wl116*r+27;

w2=9 .*no .*exp(c*log(2))+2;

w-vl+v2;

hi-exp(r*log(2) )*8+27;

h2-18*c;

hkdl+h2;

a-w.*h17676; %scale to area of full adder
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function t=trom(no)

niP[no) (no+ones(no))) 2*no'J';

no-1; 1; 1)*no;

c=rond(0.5*ni-0.5*(log(lo)/log(2))-.0001);

rround(.5*ni+0.5*(log(1o)/log(2))+.00
01);

%ROM time in nanoseconds

trow=5 .77e-4*exp(r*log(4)) +.0389*r;

trom=5.77e-4*(no .*no) .*exp(c*log(4))+.0389*elp(r*log(2));

tcol=(ones(no) +2*c).*c*0 .0493;

t=(trow+trom+tcol)/1.l68; %scale to time full adder
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function t=trom(ni,no)

c=round(O.5*ni-O.5*(log(no)/log(2))- .0001);

r=round(0.5*ni+0.5*(log(no)/log(2))+.0001);

%ROM time in nanoseconds

trow'5 .77e-4*exp(r*log(4)) + .0389*r;

trom=5.77e-4*(no.*no) .*exp(c*log(4))+.0389*exp(r*log(2));

tcol=(1+2*c) .*c*0.0493;

t=(trow+trom+tcol)/1.168; %scale to time full adder
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%. layout. m

% computes area, time, and product for ROMs of various sizes

no=2:18; %. # of bits (different cases)

xax~no,

ni=[ no, (no+ones(no))' (2*no) '3';
cases< I ; 1; J];

no~cases*no;

nls-ones(no);

a=7676; % area of full adder in lamda**2
t=1.168; %h delay through full adder in nsec

c=round(0.5*ni-0.5*(log(no)Ilog(2))- .0001);

r~round(O.5*ni+0.5*(log(no)/log(2))+.0001);

%ROM layout area in lamubda units
w1=16*r+27. *ones (no);

w2=9.*no.*exp(c*log(2))+2.*ones(no);

wwl+w2;

bl-exp(r*log(2) )*8+27;

h2=18*c;

hhl+h2;

arom-w.*h; %scale to area of full adder

%ROM time in nanoseconds

trow-5 .77e-4*exp(r*log(4)) + .0389*r;

trom=5.77e-4*(no.*no) .*exp(c*log(4))+.0389*exp(r*log(2));

tcol=(nls+2*c) . *c*0.0493;

trom-(trow+trom+tcol); %scale to time full adder

atromuarom. *trom;

ax~is( [2, 18,3, 13 );
somilogy(xax ,arom);

xlabel('Bits in ROM');

ylabel('Size (square lambdas)');

grid;

!del arom.met

meta arom;
pause;
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axisCE2,18,-1,9]);
semilogy(xax,trom);

xlabel('Bits in ROM');

ylabel('Speed (ns)');
grid;
!del trom.met
meta trom;
pause;

axis([2,18,3,21]);

semilogy(xax,atrom);

xlabel('Bits in ROM');

ylabel ('Area-Time (ns*square lambdas)');
grid;
pause;

arom~arom/a;

trom-tram/t;

atrom-.atrom/ (a*t);

axis([2,18,-1,9]);

semilogy(xax,arom);

xlabel('Bits in ROM');
ylabel(ISize (# FAs)');
grid;
del aromr.met

meta aromr;
pause;

axis([2, 18,-1.,9j);

semilogy(xax,trom);

xlabel('Bits in ROW');
ylabel(ISpeed (# FAs));

grid;
del tromr.met

meta tromr;
pause;

axis([2,18,-1,153);

semilogy(xaxatrom);

zlabel('Bits in ROM');

ylabel('Area-Time (0 FAs));
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grid;
!del atromr.met

met&~ atromr;
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%. addcomp.m

%~ comparison of RN S adders
no-2:6;

a-arom(no);

t-trorn(no);

arom-a(3,:);

aromcorr-no+a(2,:);
adualadd-2*no;

aplot=[arom' aroxucorr' adualadd'];

semilogy (no ,aplot);

xlabel('Nuiber of bits');

ylabel('Area relative to full adder');

labels-'ROM Lookup '

'Correction ROM';

'Dual Adders ']I;
text(4.15*ones(aplot(l,:)),aplot(4,:)+EO 0 -6], labels);
pause;

t rom-t (3,:)

tromcorr-no+t (2,:);
tdualadd-no+ones (no);

tplot=[trom' tromcorr' tdualadd'];

semilogy(no ,tplot);

xlabel('Nuuber of bits');

ylabel('Time relative to full adder');
labels=E'ROM Lookup '

'Correction ROM';

'Dual Adders '];

text(4.65*ones(aplot(1,:)),tplot(5,:)+[ 0 0-3], labels);
pause;
atplot-aplot.*tplot;

semilogy(no ,atplot);

xlabel('Number of bits');

ylabel('Area-Time relative to full adder');

labels-['ROM Lookup 0;
'Correction ROM';

'Dual Adders 'J
text(4.65*ones(aplot(l, :)) ,atplot(5, :)+[-8000 0 -50], labels);
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grid;
!del addcomp.met
meta addcomp;
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% multcomp.m

% comparison of RINS multipliers
n-2:8;

anarom(n);

t-trom(n);

aromu(3,:);

aind-3*a(l, :)+2*n;

aqsm-6*u+2*a(1,:);

afa-3* (n-ones (n)) .*n;

aqsm2-4*n+2*a(2,:);

aplotoEarom' aind' aqsm' af a' aqsm2'J;

semilogy(n,aplot);

xlabel('Number of bits');

ylabel('Area relative to full adder');

labels=['RDM Lookup

'Index Multiplier';
'Quarter Sq Mult ';

'Full Adder Array';

'Modified QSM 13;
text(6.1*ones(aplot(l,:)),aplot(7,:)+EO 0 0 0 0], labels);
grid;pause;

t rom-t (3, :) ;
tind-n+ones(n)+2*t(l,:);

tqsm-2*(n+ones(a))+t(l,:);

tfa-n. *u+n-ones(n);

tqsm2-2*n+ones (i) +t (2,:);
tplots~trom' tind' tqsm' tf a' tqsm2'J;

semilogy(n,tplot);

xlabel('Number of bits');
ylabel('Time relative to full adder');
labels-E'ROM Lookup I

'Index Multiplier';

'Quarter Sq Mult ';

'Full Adder Array';

'Modified QSM '];
text(6.leones(tplot(1,:)),tplot(7,:)+[O 0 0 0 0], labels);
grid;pause;
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atplot-aplot. *tplot;
semilogy(n, atplot);
xlabel('Number of bits');
ylabel('Area-Time relative to full adder');
labels-='ROM Lookup 0;

'Index Multiplier';

'Quarter Sq Mult ';
'Full Adder Array';

'Modified QSM ');
text(6.1*ones(atplot(l,:)),Ele6 1e2 800 1e4 2e3], labels);
grid;
!del multcomp.met

meta multcomp
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Xrusiacouip.m
% comparison of RNS multipliers to integer multipliers

% for different numbers of moduli
1-4:7;
b-5:35;

Lul*ones(b);

ratio-((ones(l) ./l)*b);

for i=i:(size(l)*E1;0J)

a=arom(ratio(i,:));
rnsa(i, :)=(4*ratio(i, :)+2*a(2,:));

t-trom(ratio(i,:));

end;
rnsat-L.*rnsa.*rnst;

Yrnsat-L.*(6*ratio+2*O. 122*exp(ratio*log(2,03)));

%rnsat-unsat.*(2*(ratio+ones(ratio))+0.0413*exp(ratio*log(1.93)));

Binones (1)*b;

intatw(B.*B-1.S*B) .*B*2;

atploturnsat . /ntat;

plot (b, atplot)

%semilogy(b, atplot);
grid;

ylabel('Area-ti.me ratio, RXS:Thteger');

xlabel('Number of bits');

labels- E'4';
'5';

'6;

'7');

text(31*ones(atplot(:,1))I,[.25 .08 .04 .01], labels);

!del rasmcomp.met
meta rasmcomp
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%. atcomp.m

% area-time comparison for DFT computation
% ideal selection of moduli
dft4[63 252 504];

dftls-ones(dft);

adda[1394 6584 14428]; % S of additions in DFTs

multu[198 792 1584]; %. # of multiplications in DFTs

1=[3 4 5 6 7]'; % S of moduli (different cases)
llsmones(l) ;

bigls-lls*dftls;

bd=8; %. S of bits in data

bc=8; % # of bits in coefficients
a=24; %. # of trans in full adder

t-8; % RC delay through full adder
b=(bd+bc)*dftls+(log(dft) .Ilog(2));

for iul:(size(dft)*[0;1])

d-dft(i);

adds-add(i);

mults-mult(i);

for j=In:(size(l)*[1;O])

11-1(j);

% find bb

bbinb(i)/ll;

%find at for dft and 11

area-ll*(2*bb);

time-(bb+l);

rnsaddat( , i)-area*time;

area-ll*(4*bb+2*aromm( (bb+l) ,bb));

trnsm-2*bb+l+tromm((bb+1) ,bb);

rnsmultat (j, i)narea*trnsm;
end

end

intaddatub. *b;

%rnsaddat-2b (b/l. 1) *a*t;
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initmultat=(b.*b-1 .5*b) .*(2*b+dftls);
%+(6/24)*(b.*b) .*(2*b+dftls);

scadd-2* (1) *cft;
scmultu2*1*dft;

conaddinO*(l*dft);
%+3*2*(l-lls)*dft;

conmult=O*(1*dft);

intat-intaddat.*a~jd+intmultat.*mult;
for i-l:(size()*:1;0])

for j-l:(size(dft)*[O;1])

x(i ,j)-aromm(bd,b(j))*tramm(bd,b(j) )*dft~j)*2;
end

end

ymrnsaddat .*((lis*add)+scadd+conadd);

zurnsmultat.*((11s*mult)+scmult+conmnult);
rnsat-x+y+z;

camps Cintat' rnsat');
plot(dft,comp);

%title('Minimum Area-Time Products for WFTAs');

xlabel('WFTA Size,);

ylabel('Minimum A*T (#FAs)');

labels-['Intl;
'3

'4 I

'5

'6 '

'7 1
text(504*ones(comp(l,:)),comp(3,:)+[O 0 0 0 0 0J, labels);
!del atcoznp.met
meta atcomp
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% atcomp2.M
% area-time comparison for DFT computation
% stricter control over moduli (integers)
dft* (63 252 5041;

dftlsinones(dft);

addmCI394 6584 14428); %h 9 of additions in DFl's
multu(198 792 1584]; % 8 of multiplications in DFTs
14[3 4 S 6 7]'; % 9 of moduli (different cases)
lsones(l);
biglszlls*dftts;

bd=8; % # of bits in data

bc=8; %, # of bits in coefficients

a=24; %h # of trans in full adder
t-8; % RtC delay thirough full adder
b-ceil((bd+bc)*dftls4(log(dft) ./log(2)));

7
for i=1:3

d-dft (i);

adds-add(i);

for j-I:(size(l)*[a;0])

11=1(j);
% find bb(k)

bleft-b(i)-bb(l);

for ka2:l(j)

bb(k)=ceil(bleftf(1l-k+1));

bleftmbleft'-bb(k);

end

%/find at for d and 11
areaumO;

for k-1:10j)

area-areai+2*bb(k);
end

time-(bb(1)+1);
rusaddat (i,i)-area~time;

area-0;
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for k-1:1(j)

szrnsm-4*bb(k)+2*aromm((bb(k)+1) ,bb(k));
area-area+szrnsm;

end

trnsm=2*bb(I.)+1+trotmm((bb(l)+l) ,bb(l));

rnsmultat (j j)-area*trnsm;
end

end

intaddat-b. *b;

Yrnsaddat=2b (b/1+ 1) *a*t;

intmultat=(b.*b-1 .5*b) .*(2*b+dftls);
7+(6/24)*(b.*b) .*(2*b+dftls);

scadd=2* (1)*dft;

scmult=2*1*dft;

conadd=O*(1*dft);

%+3*2*(l-lls)*dft;

conmuilt=O*(l*dft);

intat=intaddat.*add+intmultat.*ut

for i=1:(size(1)*[1;OJ)

for jnl:(size(dft)*[O;1])

x(i)-aromm(bd,b(j))*tromm(bd,b(j))*dft(j)*2;
end

end

y=rnsaddat.* ((lls*add) fscadd+conadd);
z-rnsmultat.*( (lls*mult)4scmult+conmult);
rnsat~x+y+z;

compam~intat' rnsat'];
plot(dft,comp);

%title(lMinimum. Area-Time Products f or WFTAs');

xlabel('WFTA Size));

ylabel('Minimum A*T (#FAs)');

labelsu'E'Int';
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'3

'4
'5 3

'6 '

'7 '1
text(504*ones(comp(l,:)),comp(3,:)+[O 0 0 0 0 0], labels);

!del atcomp2.met

meta atcomp2
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% atcomp3.ax
% area-time comparison for DFT computation

%. more strict control of moduli ('fudge, loss in dyn range)

dft-[63 252 5043;

% 1008];
dftls~ones(dft);

add-C1394 6584 14428];

%. 34416]; %. S of additions in DFTs
multdl198 792 1584);

%. 3564]; % 8 of multiplications in DFTs

1=[3 4 5 6 7]'; % 9 of moduli (different cases)

lis~ones (1)

bi.glsnlls*dft is;

bd-8; %. S of bits in data

bc*8; %. # of bits in coefficients

a-24; %. # of trans in full adder

t=8; % RC delay through full adder
b=(bd+bc)*dftls+(log(dft) ./log(2));

rn~sb-cei1(11s*b+(l.*[0 0 0.2 0.25 0.43P1)*dftls);

b-cell(b);

for xs1:(sizddft)*[O 1] ')

ddft(i);

adds-add(i);

muitsamult(i);

for jsI:(size(1)*[1 0]')

11=1(j);

%. find bb(k)

bb(i)-ceil(rnsbQj,i)/ll);

%bb(l)-ceil(2*bb(1)-log(exp(bb(l)*log(2))-3) /log(2));

blefturnsb(j ,i)-bb(1);

for ka2:l(j)

bb(k)-(bleft/(ll-k+1));,

if bb(k)<2,

bb(k)u'2;

else
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% zulog(exp(bb(k)*log(2))-3)/log(2);
bb(k)=ceil(bb(k));

end

bleftbleft-bb(k);

end

%find at for d and 11

area=G;

for k=1:1(j)

areaarea+2*bb (k);

end

time=(bb(1)+l);

rnsaddat (j, i) =area*time;

area=O;

for k=1:1(j)

szrnsm=4*bb(k)+2*aromm((bb(k)+l) ,bb(k));

areasarea+szrnsm;

end

trnsm=2*bb(1)+1+tromn((bb(l)+l) ,bb(l));

rnsmultat (j i)=area*trnsm;

edend

intaddat-b. *b;

%rnsaddat=2b(b/1+4A)*a*t;

intmultat=(b.*b-1 .5*b) .*(2*b~dftls);

7+(6/24)*(b.*b) .*(2*b+dftls);

scaddin2*1*dft;

scmult=2*1*dft;

conadd=O*(l*dft);

f+3*2*(l-lls)*dft;

conmult=O*(1*dft);

intat-intaddat.*add+intmultat.*mult;

for iul:(size(l)*[1;1)
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for jrl:(size(dft)*[O;1])

x(i ,j)=aromm(bd,rnsb(i,j))*tromm(bd,rnsb(i,j))*dft(j)*2;

end

end

y-rnsaddat.*((lls*add)+scadd+conadd);

z=rnsmultat.*( (lls*mult)+scmult+conmult);

rnsat-x+y+z;

comp=[intat' rnsati];

% Distributed
N=[64 256 512];

logn-[6 8 9];

a=aromm(4, (4*(bc+l)));

t=troinm(4, (4*(bc+l)));

size-(N/2) .*(log(N)/log(2))*(a+(bc4I)*2);

time=t*(bd*ones(N)+(bc+l)*(log(N)/log(2)));

distsize.*tjme;

plot(dft,comp,N,dist);

%/title('Minimum Area-Time Products f or WFTAs');

xlabel('WFTA Size));

ylabel(lMinimum A*T (#FAs)');

labels-['Int';

)3 1

)4

'5 '

)6 '

)7']

text(504*ones(comp(l,:)),comp(3,:)+[O 0 0 0 0 0], labels);

!del atcomp3.met

meta atcomp3

108



%. atcomp4.m

% area-time comparison for DFT computation
%more strict control of moduli (fewer integers)

% smaller range for integers
dft-(63 252 504];

% 1008);
dftls-ones(dft);

add=[1394 6584 14428);

%. 34416]; %. * of additions in DFTs

mult-[198 792 1584);

% 3564]; % * of multiplications in DFTs
1=[3 4 5 6 7]'; % # of moduli (different cases)

llsones(l);

bigls=lls*dftls;

bd=8; % # of bits in data

bc=B; %h * of bits in coefficients

a=24; %. # of trans in full adder

t=8; % RC delay through full adder
b=(bd+bc)*dftls+(log(dft) ./log(2));

rnsb=ceil(lls*b4(l.*EO 0 0.2 0.25 0.43)')*dftls);

for i=1:(size(dft)*C0 111)

d=dft(i);

addsadd(i);

multsmult(i);

for j-l:(size(l)*[1 0]')

11=1(j);

%. find bb(k)

bb(1)=ceil(rnsbQj,i)/ll);

%bb(l)-ceil(2*bb(l)-log(exp(bb(l) *log(2) )-3) /log(2));

blefturnsb(j ,i)-bb(i);

for k=2:1(j)

bb(k)=(bleft/(11-k+1));

if bb(k)<2,

bb(k)'.2;

else
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o% z-log(exp(bb(k)*log(2))-3)/log(2);

bb(k)=ceil(bb(k));

end

bleft-bleft-bb(k);

end

%find at for d and 11

area-O;

for k=1:1(j)

area=area+2*bb (k);

end

time-(bb(l)+l);

rnsaddat Q(, i) =area*t ime;

area=O;

for k=1:1(j)

szrnsm-4*bb(k)+2*aromm((bb(k)+l) ,bb(k));

areaarea+szrnsm;

end

trnsm=2*bb(l)+l+tromm((bb(l)+1) ,bb(1));

rnsmultat( , i)=area*trnsm;

end

end

b=ceil(bd*dftls+max((lag(dft)/log(2)) ,(bc*dftls)));

intaddat=b. *b;

%rnsaddat-2b(b/1+1) *a*t;

intmultat=(b.*b-1.S*b) .*(2*b+dftls);

%.(6/24)*(b.*b) .*(2*b+dftls);

scadd=2* (1)*dft;

scmultu2*1*dft;

conadduO* (1*dft);

%+3*2*(1-lls)*dft;

conmult=O*(1*dft);

intat-intaddat.*add+intmultat.*mult;
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for iul:(size(l)*[1;O])

for j=1:(size(dft)*EO;1J)

x(i,j)-aromm(bd,rnsb(i,j))*tromm(bd,rnsb(i,j))*dft(j)*2;

end

end

y=rnsaddat. *((lls*add)+scadd+conadd);

z-rnsmultat.*( (lls*mult)+scmult+conmult);

rnsat=x+y+z;

comnp-[intat I rnsat']

plot (dft,comp);

%title('Minimum Area-Time Products for WFTAs');

xlabel('WFTA Size');

ylabel('Minimum A*T (#FAs)');

labels-E'Int);

'3 1

'4 I

'5 '

'6 '

'7';

text(504*ones(comp(l,:)),comp(3,:)+[O 0 0 0 0 0], labels);

!del atcomp4.met

meta atcomp4
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